Periodic Solutions to a Third-Order Conditional Difference Equation over the Integers
نویسندگان
چکیده
As mentioned in 1 , difference equations appear naturally as a discrete analogue and as a numerical solution of differential and delay differential equations having applications in various scientific branches, such as biology, ecology, physics, economy, technics, and sociology. The stability, asymptotic behavior, and periodic property of solutions to difference equations had been widely investigated, such as 2–14 . Recently, the study of max-type difference equation attracted a considerable attention, for example, 7, 11, 15–25 . Although max-type difference equations are relatively simple in form, it is unfortunately extremely difficult to understand thoroughly the behavior of their solutions. The max operator arises naturally in certain models in automatic control theory. On the other hand, there exists another kind of difference equations called conditional difference equations, which also have simple forms, but it is difficult to understand clearly the behavior of their solutions. From 2, 5 , we know that the following conditional difference equation
منابع مشابه
Vibration of Road Vehicles with Non linear Suspensions
In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...
متن کاملSOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.
Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.
متن کاملPERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS
There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...
متن کاملPeriodic solutions of fourth-order delay differential equation
In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$ is investigated. Some new positive periodic criteria are given.
متن کاملON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014